Sexton Biotechnologies

Publications

  1. Torres Chavez, A. et al. Choice of serum for ex vivo expansion determines in vivo CAR T cell function.
  2. Torres Chavez, A. et al. Expanding CAR T cells in human platelet lysate renders T cells with in vivo longevity. J Immunother Cancer 7, (2019).
  3. Riis, S., Nielsen, F. M., Pennisi, C. P., Zachar, V. & Fink, T. Comparative Analysis of Media and Supplements on Initiation and Expansion of Adipose-Derived Stem Cells. Stem Cells Transl Med 5, 314–324 (2016).
  4. MSC White Paper Optimizing Production.
  5. Covid-19 – Safety and Supply of Ancillary Materials (22Apr2020).
  6. MSC White Paper Optimizing Production (May 2020).
  7. Copland, I. B., Garcia, M. A., Waller, E. K., Roback, J. D. & Galipeau, J. The effect of platelet lysate fibrinogen on the functionality of MSCs in immunotherapy. Biomaterials 34, 7840–7850 (2013).
  8. Canestrari, E., Steidinger, H. R., Charlebois, S. J. & Dann, C. T. Human platelet lysate media supplement supports lentiviral transduction and expansion of human T lymphocytes while maintaining memory phenotype Running title (50 characters): Human platelet lysate for producing modified T cells.
  9. Cooper, R. S. et al. Rapid GMP-Compliant Expansion of SARS-CoV-2–Specific T Cells From Convalescent Donors for Use as an Allogeneic Cell Therapy for COVID-19. Front Immunol 11, (2021).
  10. Dann – A new PL alternative to serum for ex vivo transduction and expansion of human T cells (ASGCT 2018).
  11. Thompson, S. et al. Improving the quality cell yield of T-cell immunotherapies through selective pressures imparted by culture media supplements. Cell Gene Ther Insights 6, 287–294 (2020).
  12. Haack-Sørensen, M. et al. Development of large-scale manufacturing of adipose-derived stromal cells for clinical applications using bioreactors and human platelet lysate. Scand J Clin Lab Invest 78, 293–300 (2018).
  13. Haack-Sørensen, M., Johansen, E. M., Højgaard, L. D., Kastrup, J. & Ekblond, A. GMP Compliant Production of a Cryopreserved Adipose-Derived Stromal Cell Product for Feasible and Allogeneic Clinical Use. Stem Cells Int 2022, (2022).
  14. Charlebois – Characterization of a Pathogen-Reduced hPL (ISCT 2018).

Human Platelet Lysate

  1. Barro, L., Burnouf, P. A., Chou, M. L., Nebie, O., Wu, Y. W., Chen, M. S., Radosevic, M., Knutson, F., & Burnouf, T. (2021). Human platelet lysates for human cell propagation. Platelets, 32(2), 152–162. https://doi.org/10.1080/09537104.2020.1849602
  2. Barro, L., Su, Y. T., Nebie, O., Wu, Y. W., Huang, Y. H., Koh, M. B. C., Knutson, F., & Burnouf, T. (2019). A double-virally-inactivated (Intercept–solvent/detergent) human platelet lysate for in vitro expansion of human mesenchymal stromal cells. Transfusion, 59(6), 2061–2073. https://doi.org/10.1111/TRF.15251
  3. Bieback, K., FERNANDEZ-MUÑOZ, B., PATI, S., & SCHÄFER, R. (2019). Gaps in the knowledge of human platelet lysate as a cell culture supplement for cell therapy: a joint publication from the AABB and the International Society for Cell & Gene Therapy. Cytotherapy, 21(9), 911–924. https://doi.org/10.1016/J.JCYT.2019.06.006
  4. Canestrari, E., Charlebois, S., & Harris, S. (2018). Human platelet lysate as a media supplement for ex vivo expansion of immune cells. Cytotherapy, 20(5), S61. https://doi.org/10.1016/j.jcyt.2018.02.169
  5. Canestrari, E., Steidinger, H. R., McSwain, B., Charlebois, S. J., & Dann, C. T. (2019). Human platelet lysate media supplement supports lentiviral transduction and expansion of human T lymphocytes while maintaining memory phenotype. Journal of Immunology Research, 2019. https://doi.org/10.1155/2019/3616120
  6. Chan, J. D., Lai, J., Slaney, C. Y., Kallies, A., Beavis, P. A., & Darcy, P. K. (2021). Cellular networks controlling T cell persistence in adoptive cell therapy. Nature Reviews. Immunology, 21(12), 769–784. https://doi.org/10.1038/S41577-021-00539-6
  7. Chao, L., Zhu, H., Zhang, L., Liu, X., Ji, Y., Zhang, H., Li, Z., Wu, C., & Zhu, F. (2023). Human platelet lysate as a substitute for serum in natural killer cell generation and expansion. Life Medicine, 2. https://academic.oup.com/lifemedi
  8. Charlebois, S., Canestrari, E., & Harris, S. (2018). Characterization of a pathogen reduced human platelet lysate. Cytotherapy, 20(5), S61. https://doi.org/10.1016/j.jcyt.2018.02.168
  9. Chen, Q., Smith, S., Fong, T., Shirazian, A., Lee, J., Chapman, L., Tong, J., & Vaz, W. (2018). Practical considerations for sourcing clinical-grade human tissue to support development and production of emerging commercial cellular therapies. Cytotherapy, 20(5), S61. https://doi.org/10.1016/j.jcyt.2018.02.170
  10. Cooper, R. S., Fraser, A. R., Smith, L., Burgoyne, P., Imlach, S. N., Jarvis, L. M., Turner, D. M., Zahra, S., Turner, M. L., & Campbell, J. D. M. (2021). Rapid GMP-Compliant Expansion of SARS-CoV-2–Specific T Cells From Convalescent Donors for Use as an Allogeneic Cell Therapy for COVID-19. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.598402
  11. Copland, I. B., Garcia, M. A., Waller, E. K., Roback, J. D., & Galipeau, J. (2013). The effect of platelet lysate fibrinogen on the functionality of MSCs in immunotherapy. Biomaterials, 34(32), 7840–7850. https://doi.org/10.1016/j.biomaterials.2013.06.050
  12. Haack-Sørensen, M., Johansen, E. M., Højgaard, L. D., Kastrup, J., & Ekblond, A. (2022). GMP Compliant Production of a Cryopreserved Adipose-Derived Stromal Cell Product for Feasible and Allogeneic Clinical Use. Stem Cells International, 2022. https://doi.org/10.1155/2022/4664917
  13. Haack-Sørensen, M., Juhl, M., Follin, B., Harary Søndergaard, R., Kirchhoff, M., Kastrup, J., & Ekblond, A. (2018). Development of large-scale manufacturing of adipose-derived stromal cells for clinical applications using bioreactors and human platelet lysate. Scandinavian Journal of Clinical and Laboratory Investigation, 78(4), 293–300. https://doi.org/10.1080/00365513.2018.1462082
  14. Kastrup, J., Haack-Sørensen, M., Juhl, M., Harary Søndergaard, R., Follin, B., Drozd Lund, L., Mønsted Johansen, E., Ali Qayyum, A., Bruun Mathiasen, A., Jørgensen, E., Helqvist, S., Jørgen Elberg, J., Bruunsgaard, H., & Ekblond, A. (2017). Cryopreserved Off-the-Shelf Allogeneic Adipose-Derived Stromal Cells for Therapy in Patients with Ischemic Heart Disease and Heart Failure—A Safety Study. Stem Cells Translational Medicine, 6(11), 1963–1971. https://doi.org/10.1002/sctm.17-0040
  15. López-Cantillo, G., Urueña, C., Camacho, B. A., & Ramírez-Segura, C. (2022). CAR-T Cell Performance: How to Improve Their Persistence? Frontiers in Immunology, 13. https://doi.org/10.3389/fimmu.2022.878209
  16. Lynggaard, C. D., Jersie-Christensen, R., Juhl, M., Jensen, S. B., Grønhøj, C., Melchiors, J., Jacobsen, S., Møller-Hansen, M., Herly, M., Ekblond, A., Kastrup, J., Fischer-Nielsen, A., Belstrøm, D., & von Buchwald, C. (2022). Intraglandular mesenchymal stem cell treatment induces changes in the salivary proteome of irradiated patients. Communications Medicine 2022 2:1, 2(1), 1–12. https://doi.org/10.1038/s43856-022-00223-3
  17. Nims, R. W., & Plavsic, M. (2015). Efficacy of Electron Beam for Viral Inactivation. Journal of Microbial & Biochemical Technology, 7(4), 173–176. https://doi.org/10.4172/1948-5948.1000200
  18. Philippe, V., Laurent, A., Abdel-Sayed, P., Hirt-Burri, N., Ann Applegate, L., & Martin, R. (2021). Human Platelet Lysate as an Alternative to Autologous Serum for Human Chondrocyte Clinical Use. Cartilage, 13(1_suppl), 509S-518S. https://doi.org/10.1177/19476035211035433/ASSET/IMAGES/LARGE/10.1177_19476035211035433-FIG2.JPEG
  19. Pierce, J., Benedetti, E., Preslar, A., Jacobson, P., Jin, P., Stroncek, D. F., & Reems, J. A. (2017). Comparative analyses of industrial-scale human platelet lysate preparations. Transfusion, 57(12), 2858–2869. https://doi.org/10.1111/TRF.14324
  20. Riis, S., Nielsen, F. M., Pennisi, C. P., Zachar, V., & Fink, T. (2016). Comparative Analysis of Media and Supplements on Initiation and Expansion of Adipose-Derived Stem Cells. Stem Cells Translational Medicine, 5(3), 314–324. https://doi.org/10.5966/sctm.2015-0148
  21. Smolko, E. E., Lombardo, J. H., Smolko, E. E., & Lombardo, J. H. (2005). Virus inactivation studies using ion beams, electron and gamma irradiation. NIMPB, 236(1–4), 249–253. https://doi.org/10.1016/J.NIMB.2005.04.055
  22. Tejedor, G., Boisguerin, P., Vivès, É., Jorgensen, C., Guicheux, J., Vinatier, C., Gondeau, C., & Djouad, F. (2022). PPAR β/δ -Interfering Peptide Enhanced Mesenchymal Stromal Cell Immunoregulatory Properties. Stem Cells International, 2022. https://doi.org/10.1155/2022/5494749
  23. Thompson, S., Thompson, S., Klarer, A., Smith, D., Charlebois, S., Taylor, A., & Steidinger, H. (2020). Improving the quality cell yield of T-cell immunotherapies through selective pressures imparted by culture media supplements. Cell and Gene Therapy Insights, 6(2), 287–294. https://doi.org/10.18609/cgti.2020.039
  24. Torres Chavez, A., McKenna, M. K., Canestrari, E., Dann, C. T., Ramos, C. A., Lulla, P., Leen, A. M., Vera, J. F., & Watanabe, N. (2019). Expanding CAR T cells in human platelet lysate renders T cells with in vivo longevity. Journal for ImmunoTherapy of Cancer, 7(1). https://doi.org/10.1186/s40425-019-0804-9
  25. Tylek, T., Schilling, T., Schlegelmilch, K., Ries, M., Rudert, M., Jakob, F., & Groll, J. (2019). Platelet lysate outperforms FCS and human serum for co-culture of primary human macrophages and hMSCs. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-40190-9
  26. Watanabe, N., Mo, F., & McKenna, M. K. (2022). Impact of Manufacturing Procedures on CAR T Cell Functionality. In Frontiers in Immunology (Vol. 13). Frontiers Media S.A. https://doi.org/10.3389/fimmu.2022.876339
  27. Werner, S., Thompson, S., Day, R., Hawkins, B., & Petrosky, J. (2022). Possibilities for continuous closed-system processing of cell therapies. Cell and Gene Therapy Insights, 8(7), 799–807. https://doi.org/10.18609/CGTI.2022.121
  28. Witzeneder, K., Lindenmair, A., Gabriel, C., Höller, K., Theiß, D., Redl, H., & Hennerbichler, S. (2013). Human-derived alternatives to fetal bovine serum in cell culture. Transfusion Medicine and Hemotherapy, 40(6), 417–423. https://doi.org/10.1159/000356236
  29. Zhu, H., & Kaufman, D. S. (2019). An Improved Method to Produce Clinical-Scale Natural Killer Cells from Human Pluripotent Stem Cells. Methods in Molecular Biology (Clifton, N.J.), 2048, 107–119. . https://doi.org/10.1007/978-1-4939-9728-2_12
Scroll to Top